
  

Chapter 8: Queueing Theory

Math 419W/519
Prof. Andrew Ross

Eastern Michigan University

In this chapter, “mu” is a rate like it was in chapter 
5&6, not a mean like it was in chapter 7.



  

What is it?

● A queue = a line of people or things waiting to 
be served

● Queueing Theory: ways of predicting how long 
the line or wait will be, or deciding on how many 
servers to have.



  

Applications

● Telephone call centers

● Factories

● Inventory

● Health care

● Firefighters/police/ambulance

● Repair technicians

● Car/Truck Traffic

● Internet data traffic

● UPS/FedEx

● Machines waiting for repair

● etc.



  

Air Travel

● Wait to find a parking space

● Wait for the parking shuttle

● Wait to check your bags

● Wait to get through security

● Wait to buy some food

● Wait for your plane to arrive

● Wait to board the plane

● Wait for luggage to finish loading

● Wait to de-ice

● Wait to take off

● Wait to de-ice

● Wait to take off

● Wait for the peanuts

● Wait to land

● Wait for the gate to free up

● Wait to de-plane

● Wait for your luggage

● Wait for a taxi



  

Basic Notation

● Arrival pattern/Service Pattern/#servers
● Pattern specifiers:

● M = memoryless (Poisson Process for arrivals, or 
exponential distribution for service durations)

● G = General (could be any distribution)
● D = Deterministic
● E = Erlang distribution
● H = Hyperexponential distribution
● PH = Phase-Type distribution



  

Start Simple, Ignoring:

● Time-of-day changes in arrival rate

● Priorities

● Balking (giving up before joining the queue)

● Abandoning/reneging (giving up while in queue)

● Retrials (trying back later after balking/abandoning)

● Batch arrivals

● Batch service

● Uncertainty in arrival rate

● Bilingual/Monolingual servers (Press 1 for English...)

● Virtual Hold (Press 1 and we will call you back...)



  

Example notation

● M/M/1 : arrivals follow a Poisson process, 
service times are exponentially distributed, 
single server.

● M/M/c: multiple servers.  The basic call-center 
model.

● M/G/1: Poisson arrivals, general distribution of 
service durations



  

Notation: Input measures

● lambda = arrival rate
● e.g. 120 calls per hour=30 seconds between calls, 

on avg.

● mu = service rate per server
● e.g. 4 calls per hour = 15 minutes per call, on avg.

● c = # of servers (or k, or m, or n, or s)!
● rho = lambda/mu = “traffic”

● For example, rho=120 calls per hour/4 calls per 
hour = 30 (units cancel—it's unitless!)



  

The usual problem

● Knowing lambda, mu, and c, what will be the 
average waiting time or line length?
● There are some exact formulas for this.

● The real problem: knowing lambda and mu, and 
having a limit on the avg. waiting time, how 
many servers are needed?
● There is a simple approximate formula for this, but 

hardly ever an exact formula.



  

Notation: Basic Output Measures

● L = avg # of people or jobs in the system
● That's in the line plus those in service

● Lq = avg # of people or jobs in the line
● Not including those in service

● W = avg time spent in the system
● That's time spent in line, plus time spent in service

● Wq = avg time spent in the line
● Of course, W = Wq + 1/mu



  

Basic Output Measures: when?

● For queues involving people, we usually care about Wq, because 
once they get into service, they are happy.
● At the emergency room, you want to see a doctor right away, but once 

you do, you don't want that doctor to rush.

● For queues involving objects, we usually care about W, because 
as long as they are in the system, they aren't being used 
profitably elsewhere.

● Less common to care about L or Lq—only when deciding how big 
the waiting area should be.
● And even then, need to plan for much more than the average.



  

Fancy Output Measures

● % of time that a server is busy (“utilization”)
● Higher is good to keep costs low
● Lower is good to keep waiting times low
● Overall, don't try to control it, except:
● Keep it under 95% (?) for human servers

● Pr(wait < 20 seconds) = 80% (?)
● Adapt to context: Emergency 911 vs IRS helpline

● Pr(had to wait at all)
● % Abandonment
● Pr(blocked) if there's a finite waiting room



  

Little's Law

● L = lambda*W, and Lq = lambda*Wq
● Along with W=Wq+1/mu
● Given any one of L, Lq, W, Wq, you can compute the 

other 3 easily.
● But Little's Law doesn't actually compute any of them 

in the first place.
● Also applies to infinite-server systems where Wq=0, 

W=1/mu.
● Also applies just to servers: avg # in service = arr. 

rate to service * 1/mu



  

General Plan

● Formulate a Markov Chain (usually CTMC)
● Find steady-state probabilities
● From those, compute L or Lq



  

Who is doing the observing?

● Suppose we have 1 arrival every hour exactly 
on the hour.

● And service takes exactly 59 minutes.
● This is a D/D/1 queue—simple, but boring.
● The server says: I'm busy 59/60=98.33% !
● Arriving customers say: we never saw the 

server busy!



  

When does that not happen?

● This is avoided if arrivals are Poisson:

Poisson

Arrivals

See

Time

Averages

=PASTA (proposition 8.2)



  

Chapter 8.3.1: M/M/1

● L = rho/(1-rho)
● doesn't depend on lambda & mu separately, just 

their ratio

● Calculate in your head:

rho L

0.5

0.8

0.9

0.99



  

Make a spreadsheet & graph

● L = rho/(1-rho) for an M/M/1 queue
● Use: rho=0, 0.25, 0.5, 0.75, 0.9, 0.99
● Use markers-with-connecting-straight lines
● Now try markers-with-connecting-smooth-lines

● If rho=0.99 and you spend 10% more money to 
make the server go 10% faster, now rho=0.9

● What % does L decrease?



  

M/M/1 Wq graph
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Other M/M/1 facts

● Waiting time (if you are delayed) has an exponential 
distribution
● If you can't see the queue, the time you've spent waiting 

gives no information about how much longer you will 
have to wait!

● CoV is 100%: waiting time is, say, 5 minutes plus or 
minus 5 minutes.

● # of people in the system has a geometric 
distribution
● So can't just plan on the average line length!

● Pr(system empty) = 1-rho



  

Read for yourself if interested:

● Ch 8.3.2: finite buffer M/M/1/N
● Ch 8.3.4: Shoeshine Shop
● Ch 8.3.5: Bulk service



  

Ch 8.3.3: M/M/k

● Need lambda/mu = rho < k
● Otherwise work piles up faster than we can serve it!

● Some books/web sites use r=lambda/mu, rho=r/c so rho<1 is needed.

● Formula shown in the book is:
● Commonly repeated elsewhere

● Hard to use—an ungainly sum

● Impossible to use for more than 170 servers, though real call centers can have 
thousands of servers.

● Instead use web-based calculators:
● Search for “Erlang-C”, a synonym for M/M/k

● http://www.math.vu.nl/~koole/ccmath/ErlangC/

● Or Excel packages like QTS Plus (from the same place you get our class 
videos)

http://www.math.vu.nl/~koole/ccmath/ErlangC/


  

Other M/M/k facts

● Waiting time (if you are delayed) has an 
exponential distribution – similar to M/M/1

● # of people in the system has a combined 
Poisson/geometric distribution
● Poisson for n<k, geometric for n>k

● Pr(system empty) = miniscule
● Pr(arrival must wait) = “Erlang-C” function



  

Approximate as single-server?

● Let mu=1 call per minute, lambda=50 calls per minute, and 
k=57 servers.

Erlang-C calculator gives:
● Wq=2.11 seconds (! not minutes)
● Pr(not delayed) = 75.35%

● Approximate with a single really fast server?

mu=57, lambda=50, k=1 server? rho=50/57,

Wq=(1/mu)*rho/(1-rho)= 0.1253 minutes=7.5 seconds

Pr(not delayed)=1-rho=12%

● Not a good approximation at all.



  

Single vs Multi-Server

● Single-server intuition still applies:
● as rho approaches #servers, L&W go to infinity
● But the numbers aren't the same for single vs multi

● Single-server: most people are in the queue
● Multi-server: most people are in service



  

3 Laws of Applied Queueing Theory

● Get there before the queue forms
● At the grocery store, stay to the far left or right 

(but not at tollbooths)
● For M/M/c, you need approximately

#servers = rho + z*sqrt(rho)

Where z is 1 or 2: 1=good service, 2=great service.

Technically, z is the Normal Distribution cutoff for 
Pr(not delayed).  For example, if Pr(not 
delayed)=85%, then z=1



  

Practice with the 3rd Law

● Also called “Square-root staffing”
● If rho=10, you need 10+1*sqrt(10)=13.16 or 14 

servers,
● which is 31% more than rho alone.

● If rho=100, you need...
● Which is ??% more than rho alone.

● If rho=1000, you need...
● Which is ??% more than rho alone



  

Efficiency of Big Systems

● Wq falls off like 1/sqrt(rho)
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More on efficiency

I stopped here at traffic=400, but biggest physical call centers 
are about 2000 people (can get bigger by virtual grouping)

Old hospital guideline: aim for 85% utilization.  Bad!

Infomercial “operators are standing by”?  They are 
consolidated & cross-trained.

In 1978 there were 661 Poison Control Centers in the US, 
now there are 51, with a national 1-800 number



  

Chapter 8.4: Networks of Queues

● If jobs arrive from outside & eventually leave,

● If all nodes have exponential service,

● And if a backup at one queue doesn't jam service at another
● One study showed ER backups due to low # staff to move patients 

from ER to main hospital

● (and a few more assumptions)

● Then we can treat each queue independently.

● If jobs just circulate without arriving/leaving,
● Like pallets in a factory
● “closed” queueing network.  Software can solve.



  

Chapter 8.5: M/G/1

● Service time not necessarily exponential.
● Need to know Squared Coefficient of Variation 

(SCV) of service times.
● The Variability-Utilization-Time (VUT) equation:
● Wq = (1+SCV)/2  * rho/(1-rho) * 1/mu
● Also called: Pollaczek-Khintchine formula
● Is exact, not an approximation, for M/G/1
● Recognize (1+SCV)/2 ?  Inspection paradox!
● Variability hurts! Want SCV=0.



  

G/G/1 Approximation

● Include SCVa = SCV of inter-arrival times into 
VUT,

● Write service SCV as SCVs to avoid confusion.
● Kingman's equation (approximate):
● Wq = (SCVa+SCVs)/2  * rho/(1-rho) * 1/mu



  

G/G/k Approximation

● The “rho” term in the numerator 

= Pr(server busy) for single-server system.

● Replace with Pr(all servers busy)=Erlang-C for 
multiserver system

● Wq = (SCVa+SCVs)/2  * ErlangC/(1-rho) * 1/mu
● Approximating General service with Exponential 

when calculating ErlangC



  

Except for Data Networks

● Arrival of data packets isn't even a renewal 
process, let alone a Poisson Process

● Shows fractal patterns!
● Usually, averaging over a longer timespan 

reduces variability, but not for data networks.
● “Where Mathematics Meets the Internet”   

Walter Willinger and Vern Paxson



  

Service Ordering

● First-Come-First-Serve (FCFS) or FIFO
● Last-Come-First-Serve (LCFS) or LIFO
● Service in Random Order (SIRO) or RSS
● All have same averages (L, Lq, W, Wq)
● FCFS has lowest wait-time variance, LCFS 

highest.



  

Service Ordering: lower mean wait!

● Shortest Job First 
● needs estimate of service time for each job

● Shortest Remaining Processing Time 
● Also needs ability to interrupt jobs

● But either can really slow down long jobs.

● Round-Robin
● Each job gets a little slice of time, e.g. 5ms-30ms



  

Appointment-based queueing

● E.g. dentist's office, doctor's office
● No-shows are a problem: forgetfulness, etc.

● Some clinics with low-income customers will triple-
book appointment slots!
– Car breakdowns, Can't get time off, Can't get a babysitter

● Much less academic work done on this.
● A tiny trend toward only making same-day 

appointments: “Advanced Access”



  

Time-of-Day arrivals?

● Improving the SIPP Approach for Staffing Service Systems That Have Cyclic Demands. 
Linda V. Green, Peter J. Kolesar and João Soares. Operations Research, Vol. 49, No. 4 
(Jul. - Aug., 2001), pp. 549-564 

● For call center models, if rho/mu < 1, can break it into 
hour-long segments and treat each independently.

● If it's any worse, hire a queueing theorist.
● Procedure:

● Forecast the arrival rate curve
● Decide how many servers in each time block
● Decide how many people on each shift (watch out for lunch 

breaks, coffee breaks, etc), “scheduling” (Math 560)
● Decide which people work which shift (“rostering”)



  

Software

● Already mentioned:
●  Erlang-C calculators on the web & for Excel
●  QTS Plus

● Discrete-Event Simulation:
● Arena, SIMUL8, GPSS, etc.
● http://www.lionhrtpub.com/orms/surveys/Simulation/Simulation1.html

● Can hack multiserver queues in excel:

● http://www.informs.org/Pubs/ITE/Archive/Volume-7/Simpler-Spreadsheet-Simulation-of-
Multi-Server-Queues

http://www.lionhrtpub.com/orms/surveys/Simulation/Simulation1.html


  

Bigger Issues

● If you add servers to improve service, fewer 
people will balk/abandon, and your servers 
might get busier.

● Game Theory—where is the equilibrium?
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