

Chapter 8: Queueing Theory

Math 419W/519
Prof. Andrew Ross

Eastern Michigan University

In this chapter, “mu” is a rate like it was in chapter
5&6, not a mean like it was in chapter 7.

What is it?

● A queue = a line of people or things waiting to
be served

● Queueing Theory: ways of predicting how long
the line or wait will be, or deciding on how many
servers to have.

Applications

● Telephone call centers

● Factories

● Inventory

● Health care

● Firefighters/police/ambulance

● Repair technicians

● Car/Truck Traffic

● Internet data traffic

● UPS/FedEx

● Machines waiting for repair

● etc.

Air Travel

● Wait to find a parking space

● Wait for the parking shuttle

● Wait to check your bags

● Wait to get through security

● Wait to buy some food

● Wait for your plane to arrive

● Wait to board the plane

● Wait for luggage to finish loading

● Wait to de-ice

● Wait to take off

● Wait to de-ice

● Wait to take off

● Wait for the peanuts

● Wait to land

● Wait for the gate to free up

● Wait to de-plane

● Wait for your luggage

● Wait for a taxi

Basic Notation

● Arrival pattern/Service Pattern/#servers
● Pattern specifiers:

● M = memoryless (Poisson Process for arrivals, or
exponential distribution for service durations)

● G = General (could be any distribution)
● D = Deterministic
● E = Erlang distribution
● H = Hyperexponential distribution
● PH = Phase-Type distribution

Start Simple, Ignoring:

● Time-of-day changes in arrival rate

● Priorities

● Balking (giving up before joining the queue)

● Abandoning/reneging (giving up while in queue)

● Retrials (trying back later after balking/abandoning)

● Batch arrivals

● Batch service

● Uncertainty in arrival rate

● Bilingual/Monolingual servers (Press 1 for English...)

● Virtual Hold (Press 1 and we will call you back...)

Example notation

● M/M/1 : arrivals follow a Poisson process,
service times are exponentially distributed,
single server.

● M/M/c: multiple servers. The basic call-center
model.

● M/G/1: Poisson arrivals, general distribution of
service durations

Notation: Input measures

● lambda = arrival rate
● e.g. 120 calls per hour=30 seconds between calls,

on avg.

● mu = service rate per server
● e.g. 4 calls per hour = 15 minutes per call, on avg.

● c = # of servers (or k, or m, or n, or s)!
● rho = lambda/mu = “traffic”

● For example, rho=120 calls per hour/4 calls per
hour = 30 (units cancel—it's unitless!)

The usual problem

● Knowing lambda, mu, and c, what will be the
average waiting time or line length?
● There are some exact formulas for this.

● The real problem: knowing lambda and mu, and
having a limit on the avg. waiting time, how
many servers are needed?
● There is a simple approximate formula for this, but

hardly ever an exact formula.

Notation: Basic Output Measures

● L = avg # of people or jobs in the system
● That's in the line plus those in service

● Lq = avg # of people or jobs in the line
● Not including those in service

● W = avg time spent in the system
● That's time spent in line, plus time spent in service

● Wq = avg time spent in the line
● Of course, W = Wq + 1/mu

Basic Output Measures: when?

● For queues involving people, we usually care about Wq, because
once they get into service, they are happy.
● At the emergency room, you want to see a doctor right away, but once

you do, you don't want that doctor to rush.

● For queues involving objects, we usually care about W, because
as long as they are in the system, they aren't being used
profitably elsewhere.

● Less common to care about L or Lq—only when deciding how big
the waiting area should be.
● And even then, need to plan for much more than the average.

Fancy Output Measures

● % of time that a server is busy (“utilization”)
● Higher is good to keep costs low
● Lower is good to keep waiting times low
● Overall, don't try to control it, except:
● Keep it under 95% (?) for human servers

● Pr(wait < 20 seconds) = 80% (?)
● Adapt to context: Emergency 911 vs IRS helpline

● Pr(had to wait at all)
● % Abandonment
● Pr(blocked) if there's a finite waiting room

Little's Law

● L = lambda*W, and Lq = lambda*Wq
● Along with W=Wq+1/mu
● Given any one of L, Lq, W, Wq, you can compute the

other 3 easily.
● But Little's Law doesn't actually compute any of them

in the first place.
● Also applies to infinite-server systems where Wq=0,

W=1/mu.
● Also applies just to servers: avg # in service = arr.

rate to service * 1/mu

General Plan

● Formulate a Markov Chain (usually CTMC)
● Find steady-state probabilities
● From those, compute L or Lq

Who is doing the observing?

● Suppose we have 1 arrival every hour exactly
on the hour.

● And service takes exactly 59 minutes.
● This is a D/D/1 queue—simple, but boring.
● The server says: I'm busy 59/60=98.33% !
● Arriving customers say: we never saw the

server busy!

When does that not happen?

● This is avoided if arrivals are Poisson:

Poisson

Arrivals

See

Time

Averages

=PASTA (proposition 8.2)

Chapter 8.3.1: M/M/1

● L = rho/(1-rho)
● doesn't depend on lambda & mu separately, just

their ratio

● Calculate in your head:

rho L

0.5

0.8

0.9

0.99

Make a spreadsheet & graph

● L = rho/(1-rho) for an M/M/1 queue
● Use: rho=0, 0.25, 0.5, 0.75, 0.9, 0.99
● Use markers-with-connecting-straight lines
● Now try markers-with-connecting-smooth-lines

● If rho=0.99 and you spend 10% more money to
make the server go 10% faster, now rho=0.9

● What % does L decrease?

M/M/1 Wq graph

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

utilization

W
ai

tin
g

tim
e,

 h
ou

rs

Other M/M/1 facts

● Waiting time (if you are delayed) has an exponential
distribution
● If you can't see the queue, the time you've spent waiting

gives no information about how much longer you will
have to wait!

● CoV is 100%: waiting time is, say, 5 minutes plus or
minus 5 minutes.

● # of people in the system has a geometric
distribution
● So can't just plan on the average line length!

● Pr(system empty) = 1-rho

Read for yourself if interested:

● Ch 8.3.2: finite buffer M/M/1/N
● Ch 8.3.4: Shoeshine Shop
● Ch 8.3.5: Bulk service

Ch 8.3.3: M/M/k

● Need lambda/mu = rho < k
● Otherwise work piles up faster than we can serve it!

● Some books/web sites use r=lambda/mu, rho=r/c so rho<1 is needed.

● Formula shown in the book is:
● Commonly repeated elsewhere

● Hard to use—an ungainly sum

● Impossible to use for more than 170 servers, though real call centers can have
thousands of servers.

● Instead use web-based calculators:
● Search for “Erlang-C”, a synonym for M/M/k

● http://www.math.vu.nl/~koole/ccmath/ErlangC/

● Or Excel packages like QTS Plus (from the same place you get our class
videos)

http://www.math.vu.nl/~koole/ccmath/ErlangC/

Other M/M/k facts

● Waiting time (if you are delayed) has an
exponential distribution – similar to M/M/1

● # of people in the system has a combined
Poisson/geometric distribution
● Poisson for n<k, geometric for n>k

● Pr(system empty) = miniscule
● Pr(arrival must wait) = “Erlang-C” function

Approximate as single-server?

● Let mu=1 call per minute, lambda=50 calls per minute, and
k=57 servers.

Erlang-C calculator gives:
● Wq=2.11 seconds (! not minutes)
● Pr(not delayed) = 75.35%

● Approximate with a single really fast server?

mu=57, lambda=50, k=1 server? rho=50/57,

Wq=(1/mu)*rho/(1-rho)= 0.1253 minutes=7.5 seconds

Pr(not delayed)=1-rho=12%

● Not a good approximation at all.

Single vs Multi-Server

● Single-server intuition still applies:
● as rho approaches #servers, L&W go to infinity
● But the numbers aren't the same for single vs multi

● Single-server: most people are in the queue
● Multi-server: most people are in service

3 Laws of Applied Queueing Theory

● Get there before the queue forms
● At the grocery store, stay to the far left or right

(but not at tollbooths)
● For M/M/c, you need approximately

#servers = rho + z*sqrt(rho)

Where z is 1 or 2: 1=good service, 2=great service.

Technically, z is the Normal Distribution cutoff for
Pr(not delayed). For example, if Pr(not
delayed)=85%, then z=1

Practice with the 3rd Law

● Also called “Square-root staffing”
● If rho=10, you need 10+1*sqrt(10)=13.16 or 14

servers,
● which is 31% more than rho alone.

● If rho=100, you need...
● Which is ??% more than rho alone.

● If rho=1000, you need...
● Which is ??% more than rho alone

Efficiency of Big Systems

● Wq falls off like 1/sqrt(rho)

0 100 200 300 400
0

20

40

60

80

100

Traff ic

P
er

ce
nt

Utilization

Prob. of Delay

Wq (pct of avg svc)

More on efficiency

I stopped here at traffic=400, but biggest physical call centers
are about 2000 people (can get bigger by virtual grouping)

Old hospital guideline: aim for 85% utilization. Bad!

Infomercial “operators are standing by”? They are
consolidated & cross-trained.

In 1978 there were 661 Poison Control Centers in the US,
now there are 51, with a national 1-800 number

Chapter 8.4: Networks of Queues

● If jobs arrive from outside & eventually leave,

● If all nodes have exponential service,

● And if a backup at one queue doesn't jam service at another
● One study showed ER backups due to low # staff to move patients

from ER to main hospital

● (and a few more assumptions)

● Then we can treat each queue independently.

● If jobs just circulate without arriving/leaving,
● Like pallets in a factory
● “closed” queueing network. Software can solve.

Chapter 8.5: M/G/1

● Service time not necessarily exponential.
● Need to know Squared Coefficient of Variation

(SCV) of service times.
● The Variability-Utilization-Time (VUT) equation:
● Wq = (1+SCV)/2 * rho/(1-rho) * 1/mu
● Also called: Pollaczek-Khintchine formula
● Is exact, not an approximation, for M/G/1
● Recognize (1+SCV)/2 ? Inspection paradox!
● Variability hurts! Want SCV=0.

G/G/1 Approximation

● Include SCVa = SCV of inter-arrival times into
VUT,

● Write service SCV as SCVs to avoid confusion.
● Kingman's equation (approximate):
● Wq = (SCVa+SCVs)/2 * rho/(1-rho) * 1/mu

G/G/k Approximation

● The “rho” term in the numerator

= Pr(server busy) for single-server system.

● Replace with Pr(all servers busy)=Erlang-C for
multiserver system

● Wq = (SCVa+SCVs)/2 * ErlangC/(1-rho) * 1/mu
● Approximating General service with Exponential

when calculating ErlangC

Except for Data Networks

● Arrival of data packets isn't even a renewal
process, let alone a Poisson Process

● Shows fractal patterns!
● Usually, averaging over a longer timespan

reduces variability, but not for data networks.
● “Where Mathematics Meets the Internet”

Walter Willinger and Vern Paxson

Service Ordering

● First-Come-First-Serve (FCFS) or FIFO
● Last-Come-First-Serve (LCFS) or LIFO
● Service in Random Order (SIRO) or RSS
● All have same averages (L, Lq, W, Wq)
● FCFS has lowest wait-time variance, LCFS

highest.

Service Ordering: lower mean wait!

● Shortest Job First
● needs estimate of service time for each job

● Shortest Remaining Processing Time
● Also needs ability to interrupt jobs

● But either can really slow down long jobs.

● Round-Robin
● Each job gets a little slice of time, e.g. 5ms-30ms

Appointment-based queueing

● E.g. dentist's office, doctor's office
● No-shows are a problem: forgetfulness, etc.

● Some clinics with low-income customers will triple-
book appointment slots!
– Car breakdowns, Can't get time off, Can't get a babysitter

● Much less academic work done on this.
● A tiny trend toward only making same-day

appointments: “Advanced Access”

Time-of-Day arrivals?

● Improving the SIPP Approach for Staffing Service Systems That Have Cyclic Demands.
Linda V. Green, Peter J. Kolesar and João Soares. Operations Research, Vol. 49, No. 4
(Jul. - Aug., 2001), pp. 549-564

● For call center models, if rho/mu < 1, can break it into
hour-long segments and treat each independently.

● If it's any worse, hire a queueing theorist.
● Procedure:

● Forecast the arrival rate curve
● Decide how many servers in each time block
● Decide how many people on each shift (watch out for lunch

breaks, coffee breaks, etc), “scheduling” (Math 560)
● Decide which people work which shift (“rostering”)

Software

● Already mentioned:
● Erlang-C calculators on the web & for Excel
● QTS Plus

● Discrete-Event Simulation:
● Arena, SIMUL8, GPSS, etc.
● http://www.lionhrtpub.com/orms/surveys/Simulation/Simulation1.html

● Can hack multiserver queues in excel:

● http://www.informs.org/Pubs/ITE/Archive/Volume-7/Simpler-Spreadsheet-Simulation-of-
Multi-Server-Queues

http://www.lionhrtpub.com/orms/surveys/Simulation/Simulation1.html

Bigger Issues

● If you add servers to improve service, fewer
people will balk/abandon, and your servers
might get busier.

● Game Theory—where is the equilibrium?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

